234 research outputs found

    Shearlets and Optimally Sparse Approximations

    Full text link
    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the L2L^2 error of the best NN-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data", Birkh\"auser-Springe

    A Probabilistic proof of the breakdown of Besov regularity in LL-shaped domains

    Full text link
    {We provide a probabilistic approach in order to investigate the smoothness of the solution to the Poisson and Dirichlet problems in LL-shaped domains. In particular, we obtain (probabilistic) integral representations for the solution. We also recover Grisvard's classic result on the angle-dependent breakdown of the regularity of the solution measured in a Besov scale

    Signal Enhancement Based on Hölder Regularity Analysis

    Get PDF
    International audienceWe present a approach for signal enhancement based on the analysis of the local Hölder regularity. The method does not make explicit assumptions on the type of noise or on the global smoothness of the original data, but rather supposes that signal enhancement is equivalent to increasing the Hölder regularity each point. Such a scheme is well adapted to the case where the signal to be recovered is itself very irregular, e.g. nowhere differentiable with rapidly varying local regularity. In particular, we show an application to SAR image denoting where this technique yields good results compared to other algorithms

    Approximation of integral operators using product-convolution expansions

    Get PDF
    International audienceWe consider a class of linear integral operators with impulse responses varying regularly in time or space. These operators appear in a large number of applications ranging from signal/image processing to biology. Evaluating their action on functions is a computationally intensive problem necessary for many practical problems. We analyze a technique called product-convolution expansion: the operator is locally approximated by a convolution, allowing to design fast numerical algorithms based on the fast Fourier transform. We design various types of expansions, provide their explicit rates of approximation and their complexity depending on the time varying impulse response smoothness. This analysis suggests novel wavelet based implementations of the method with numerous assets such as optimal approximation rates, low complexity and storage requirements as well as adaptivity to the kernels regularity. The proposed methods are an alternative to more standard procedures such as panel clustering, cross approximations, wavelet expansions or hierarchical matrices

    Concentration analysis and cocompactness

    Full text link
    Loss of compactness that occurs in may significant PDE settings can be expressed in a well-structured form of profile decomposition for sequences. Profile decompositions are formulated in relation to a triplet (X,Y,D)(X,Y,D), where XX and YY are Banach spaces, XYX\hookrightarrow Y, and DD is, typically, a set of surjective isometries on both XX and YY. A profile decomposition is a representation of a bounded sequence in XX as a sum of elementary concentrations of the form gkwg_kw, gkDg_k\in D, wXw\in X, and a remainder that vanishes in YY. A necessary requirement for YY is, therefore, that any sequence in XX that develops no DD-concentrations has a subsequence convergent in the norm of YY. An imbedding XYX\hookrightarrow Y with this property is called DD-cocompact, a property weaker than, but related to, compactness. We survey known cocompact imbeddings and their role in profile decompositions

    From wavelets to adaptive approximations: time-frequency parametrization of EEG

    Get PDF
    This paper presents a summary of time-frequency analysis of the electrical activity of the brain (EEG). It covers in details two major steps: introduction of wavelets and adaptive approximations. Presented studies include time-frequency solutions to several standard research and clinical problems, encountered in analysis of evoked potentials, sleep EEG, epileptic activities, ERD/ERS and pharmaco-EEG. Based upon these results we conclude that the matching pursuit algorithm provides a unified parametrization of EEG, applicable in a variety of experimental and clinical setups. This conclusion is followed by a brief discussion of the current state of the mathematical and algorithmical aspects of adaptive time-frequency approximations of signals

    Greedy optimal control for elliptic problems and its application to turnpike problems

    Full text link
    This is a post-peer-review, pre-copyedit version of an article published in Numerische Mathematik. The final authenticated version is available online at: https://doi.org/10.1007/s00211-018-1005-zWe adapt and apply greedy methods to approximate in an efficient way the optimal controls for parameterized elliptic control problems. Our results yield an optimal approximation procedure that, in particular, performs better than simply sampling the parameter-space to compute controls for each parameter value. The same method can be adapted for parabolic control problems, but this leads to greedy selections of the realizations of the parameters that depend on the initial datum under consideration. The turnpike property (which ensures that parabolic optimal control problems behave nearly in a static manner when the control horizon is long enough) allows using the elliptic greedy choice of the parameters in the parabolic setting too. We present various numerical experiments and an extensive discussion of the efficiency of our methodology for parabolic control and indicate a number of open problems arising when analyzing the convergence of the proposed algorithmsThis project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 694126-DyCon). Part of this research was done while the second author visited DeustoTech and Univesity of Deusto with the support of the DyCon project. The second author was also partially supported by Croatian Science Foundation under ConDyS Project, IP-2016-06-2468. The work of the third author was partially supported by the Grants MTM2014-52347, MTM2017-92996 of MINECO (Spain) and ICON of the French AN
    corecore